Non‐parametric methods for doubly robust estimation of continuous treatment effects
نویسندگان
چکیده
منابع مشابه
Doubly robust estimation of the local average treatment effect curve.
We consider estimation of the causal effect of a binary treatment on an outcome, conditionally on covariates, from observational studies or natural experiments in which there is a binary instrument for treatment. We describe a doubly robust, locally efficient estimator of the parameters indexing a model for the local average treatment effect conditionally on covariates V when randomization of t...
متن کاملDoubly Robust Estimation of Optimal Dynamic Treatment Regimes
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331-355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131-139, 2010) and Henderson et al. (in Biometrics 66:1192-...
متن کاملPractice of Epidemiology Doubly Robust Estimation of Causal Effects
Doubly robust estimation combines a form of outcome regression with a model for the exposure (i.e., the propensity score) to estimate the causal effect of an exposure on an outcome. When used individually to estimate a causal effect, both outcome regression and propensity score methods are unbiased only if the statistical model is correctly specified. The doubly robust estimator combines these ...
متن کاملDoubly Robust Nonparametric Multiple Imputation for Ignorable Missing Data.
Missing data are common in medical and social science studies and often pose a serious challenge in data analysis. Multiple imputation methods are popular and natural tools for handling missing data, replacing each missing value with a set of plausible values that represent the uncertainty about the underlying values. We consider a case of missing at random (MAR) and investigate the estimation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2016
ISSN: 1369-7412,1467-9868
DOI: 10.1111/rssb.12212